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Abstract

Using a microwave network approach, approximate but simple dispersion relations are obtained

for the "flexural® and "pseudo-Rayleigh" modes of the ridge waveguide.

The propagation charac-

teristics calculated from the relation for the "flexural" mode compare very well with experimental
data over a wide frequency range; no accurate measurements are presently available for the

"pseudo-Rayleigh! mode.
Summary

There is, at the present time, considerable in-
terest in the ridge waveguide because of the recent
experimental observation of a very slow "flexural"
mode,! so called because of its close relationship
with the flexural mode of an infinite plate. Such a
slow mode is necessarily characterized by strong
confinement of the fields to the guiding (ridge) region,
under which conditions it is possible to realize a wide
variety of waveguide components analogous to their
electromagnetic cov.mterparts.2 In addition to this
flexural mode, which is highly dispersive, the ridge
guide can also support an essentially nondispersive
pseudo-Rayleigh' mode,! so called because of its
similarity with the Rayleigh wave on a free surface.
Although not as slow as the flexural mode, the pseudo-
Rayleigh mode should also carry most of its energy in
the ridge region, for reasons to be discussed later,
and has the virtue of being essentially dispersionless.

In the present paper, we employ a microwave net-
work approach in an approximate analysis of the prop-
agation characteristics of the pseudo-Rayleigh and
flexural modes (see Fig. 1), which are in fact the low-
est even and odd modes, respectively, of the ridge
waveguide. From a transverse equivalent network for
each mode, one obtains approximate but simple ana -
lytic dispersion relations, from which the propagation
characteristics are easily computed. Comparison of
the latter with available experimental datal shows
very good agreement over a wide range of frequency.

In the formulation of the problem, the cross sec-
tion of the ridge guide is recognized to consist of a
plate of length H, terminated at one end in a free edge,
and joined at the other end to a semi-infinite sub-
strate of the same material. If the width 2W of the
ridge is sufficiently small, it is natural and convenient
to represent the fields in the ridge (plate) region in
terms of plate modes, since the number of such modes
propagating would then be small, and the boundary
conditions on the sides of the ridge are automatically
satisfied. Each propagating mode (with real wavenum -
ber) is then rigorously represented in terms of an
equivalent transmission line in the z direction.3
Modes with imaginary or complex wavenumber mani-
fest themselves as energy stored in the vicinity of the
free edge and ridge-substrate junctions and, in an ex-
act representation, are best accounted for by including
their effect in the lumped equivalent networks repre-
senting these junctions. In the substrate region, the
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bulk waves are the natural set of modes to employ in
the representation, and these must be coupled to the
plate modes of the ridge region in a manner that sat-
isfies the continuity conditions for velocity and stress
at the ridge-substrate junction, and also the stress-
free condition at the substrate surface. In the present
analysis, rigorous representations are employed for
the propagating plate modes in the ridge region and
for the principal bulk-wave contributions in the sub-
strate, but the representations for the junction dis-
continuities are approximate,

Figure 2 shows the approximate transverse equiv-
alent network for odd modes of the ridge waveguide,
valid for the frequency range 2W < )\S/Z. In this
range, the lowest odd Lamb mode of a plate is the only
propagating mode in the ridge region, and this mode
is represented by the transmission line3 with wave-
number gy and characteristic impedance Zg, where
the definitions of these quantities are found in Fig. 2.
Since the particle motion associated with this mode is
primarily in the x direction,l the dominant contribu-
tion to the fields in the substrate will consist of SH
bulk waves with particle motion in the x direction.

Of these waves, it can be shown that the constituent
with no x variation is the most important, and this
SH wave is then represented by the transmission line3
with parameters kg and Zg , as defined in Fig. 2.
The approximate representation of the free edge of the
ridge as a simple open circuit, and a similar repre-
sentation of the ridge-substrate junction by an equally
simple transformer, result from prior insight into the
physical behavior of the mode, which greatly facilitates
the proper choice of approximations. In these approx-
imations, one neglects the higher plate modes and
other bulk waves which are excited at the junctions and
stored in the vicinity thereof.

The (approximate) dispersion relation for the flex-
ural mode of the ridge guide can now be written down
by inspection of the equivalent network of Fig. 2, upon
use of the transverse resonance condition

< -

Z{(T)+ Z{(T) =0 (1)
where Z(T) are the impedances seen looking in oppo-
site directions at any reference plane T . After some
elementary simplification, Eq. (1) leads to the disper-
sion relation
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which is valid, within the frequency range 2W < \_/2,
for the flexural mode and all odd higher modes of ®the
ridge guide. The solutions of the dispersion relation
that are of interest are such that kg > > kg, s0O
that Kg is real and Kg = —jIKSI Under these condi-
tions, the transverse (z) variation of the modal field
is trigonometric in the ridge region, but exponential-
ly decaying into the substrate, so that most of the en-
ergy resides within the ridge and is distributed
throughout its height in a standing wave fashion.

A numerical solution of Eq. (2) yields the propa-
gation characteristics of the flexural mode of the
ridge guide, as shown in Fig. 3, where the phase ve-
locity v, = w/k , normalized to the Rayleigh wave
velocity " vg , is plotted as a function of kyr(2W)
= w2W/vp . Agreement with the experimental results
of Mason et al.,l is seen to be very good for a ridge
with 2:1 aspect ratio, and to be excellent for the 3:1
case. The l:1 case is not as good, but nevertheless
still yields a rather accurate prediction of the veloc-
ity minimum, if not its location in frequency.

Figure 4 shows the transverse equivalent network
for even modes of the ridge guide, which is valid
for the frequency range 2W < \g/3 . In this case,
the fields in the ridge are represented in terms of the
lowest even Lamb mode and lowest SH mode of a plate,
and the coupling of these modes at the top of the ridge
is represented approximately by the transformer net-
work shown. Since the particle motion for these
modes is primarily in the yz plane, it can be shown
that the dominant contribution to the substrate fields
will consist of a bulk P wave and a bulk SV wave,
each having no variation in x . The coupling between
these bulk waves and the plate waves is approximated
by a direct connection. Itis noted that the two "S*
lines are in fact identical, but that the "P" and "L
lines are different.

The application of the transverse resonance con-
dition, (1), leads to the dispersion relation for even
modes of the ridge guide:

T2 . 2 2 3
Y sz - k[ + kg - K tanh, [k - k] H
s Y 27 T2 2 2
N N DL tanh,\/ky - k] H
27 72 Tz .2
= 4k ,\/ky - K JEy <k (3)

In the type of solutions sought, > kg > k> kp ,
so that x,, k7, and k_ are all imaginary, and the
fields acthally decay down from the top of the ridge in
a certain fashion, and then continue to decay into the
substrate in a slightly different manner. From a nu-
merical solution of (3), one obtains the propagation
characteristics of the lowest mode of even symmetry,
the pseudo-Rayleigh mode, as shown in Fig. 5. For
this mode, the propagation behavior is almost inde-
pendent of aspect ratio, and the dispersion curves for
H/2W = 1, 2 and 3 are indistinguishable on the scale of
Fig. 5. The reason for this is found in the fact that
the fields decay down from the top of the ridge so that
the effect of the ridge-substrate junction is almost e-
qually small for all ridge heights.

Since the phase velocity is only slightly lower than
the Rayleigh velocity, the lateral decay rate will be
small, but the magnitude of the fields at the bottom of
the ridge are small to begin with because of the decay
from the top of the ridge, so that the energy is still
concentrated within the ridge region. In Fig. 5, the
phase velocity is seen to be essentially constant over a
wide frequency range. In nondispersive applications,
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therefore, the use of this pseudo-Rayleigh mode is to
be preferred over the flexural mode.

In conclusion, it is noted that a judicial choice of
approximations, based upon physical insight, has led
to very simple solutions, of good accuracy over a
wide range of frequencies,
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FIG. 2 - TRANSVERSE EQUIVALENT NETWORK FOR

ODD MODES OF THE RIDGE WAVEGUIDE.
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FIG. 3 - DISPERSION OF LOWEST ODD MODE
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